SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lardo C.) ;pers:(Alfaro E. J.);pers:(Bonifacio P.)"

Sökning: WFRF:(Lardo C.) > Alfaro E. J. > Bonifacio P.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jackson, R. J., et al. (författare)
  • The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s(-1), dependent on instrumental configuration.
  •  
2.
  • Lanzafame, A. C., et al. (författare)
  • Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible,different methods were used to derive raw parameters (e. g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e. g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the rho Oph, Cha I, NGC2264, gamma Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be approximate to 120 K rms in T-eff, approximate to 0.3 dex rms in log g, and approximate to 0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.
  •  
3.
  • Pancino, E., et al. (författare)
  • The Gaia-ESO Survey : Calibration strategy
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 598
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average off sets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
  •  
4.
  • Puspitarini, L., et al. (författare)
  • The Gaia-ESO Survey: Extracting diffuse interstellar bands from cool star spectra DIB-based interstellar medium line-of-sight structures at the kpc scale
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. Methods. We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data. Results. We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between similar to 2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and gamma Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: lambda lambda 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. Conclusions. For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by greater than or similar to 30 km s(-1), in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy